Game Theory Lecture 10

Computing the Domination-Based Concepts

- "Dominance"
- "Iterated Elimination of Dominated Strategies"

Identifying dominated strategies

- Recall that one strategy dominates another when the first strategy is always at least as good as the second, regardless of the other players' actions.
- In this lecture, we discuss some computational tools for identifying dominated strategies, and consider the computational complexity of this process.
- Recall: Iterated removal of strictly dominated strategies
$>$ eliminates the same set of strategies regardless of the elimination order, and
$>$ all Nash equilibria of the original game will be contained in the remaining set.
$>$ Thus, this method can be used to narrow down the set of strategies to consider before attempting to identify a sample Nash equilibrium.
$>$ In the worst case, this procedure will have no effectmany games have no dominated strategies.
$>$ In practice, however, it can make a big difference to iteratively remove dominated strategies before attempting to compute an equilibrium.

Identifying dominated strategies (Cont'd)

- Recall: Iterated removal of weakly dominated strategies
\square Elimination order does make a difference: the set of strategies that survive iterated removal can differ depending on the order in which dominated strategies are removed.
\square Removing weakly dominated strategies can eliminate some equilibria of the original game.
$>$ There is still a computational benefit to this technique:
\square Since no new equilibria are ever created by this elimination (and since every game has at least one equilibrium), at least one of the original equilibria always survives.
\square This is enough if all we want to do is to identify a sample Nash equilibrium.
\square Furthermore, iterative removal of weakly dominated strategies can eliminate a larger set of strategies than iterative removal of strictly dominated strategies and so will often produce a smaller game.

Domination by a pure strategy

- Checking whether a (not necessarily pure) strategy s_{i} for player i is (strictly; weakly) dominated by any pure strategy for i.
- Let us consider the case of strict dominance.
$>$ To solve the problem we must check every pure strategy a_{i} for player i and every pure-strategy profile for the other players to determine whether there exists some a_{i} for which it is never weakly better for i to play s_{i} instead of a_{i}. If so, s_{i} is strictly dominated.
forall pure strategies $a_{i} \in A_{i}$ for player i where $a_{i} \neq s_{i}$ do dom \leftarrow true
forall pure-strategy profiles $a_{-i} \in A_{-i}$ for the players other than i do if $u_{i}\left(s_{i}, a_{-i}\right) \geq u_{i}\left(a_{i}, a_{-i}\right)$ then dom \leftarrow false break if dom = true then L return true
return false

Domination by a pure strategy

forall pure strategies $a_{i} \in A_{i}$ for player i where $a_{i} \neq s_{i}$ do
dom \leftarrow true
forall pure-strategy profiles $a_{-i} \in A_{-i}$ for the players other than i do if $u_{i}\left(s_{i}, a_{-i}\right) \geq u_{i}\left(a_{i}, a_{-i}\right)$ then
dom \leftarrow false
break
if $d o m=$ true then
\llcorner return true
return false

- The case of weak dominance can be tested using essentially the same algorithm, except that we must test the condition $u_{i}\left(s_{j}, a_{-i}\right)>u_{i}\left(a_{i}, a_{-i}\right)$. Also, we need to do a bit more book-keeping:
- We must also set dom \leftarrow false if there is not at least one a_{-i} for which $u_{i}\left(s_{i}, a_{-i}\right)<u_{i}\left(a_{i}, a_{-i}\right)$.
- For both definitions of domination, the complexity of the procedure is $\mathrm{O}(|\mathbf{A}|)$, linear in the size of the normal-form game.

Domination by a mixed strategy

- Recall that sometimes a strategy is not dominated by any pure strategy, but is dominated by some mixed strategy.
- We cannot use a simple algorithm like before to test whether a given strategy s_{i} is dominated by a mixed strategy because these strategies cannot be enumerated.
- However, it turns out that we can still answer the question in polynomial time by solving a linear program.
> To this end, we will assume that player i's utilities are strictly positive.
- This assumption is without loss of generality since if any player i's utilities were negative, we could add a constant to all payoffs without changing the game.

Domination by a mixed strategy

Each flavor of domination requires a somewhat different linear program.
> First, let us consider strict domination by a mixed strategy. This would seem to have the following straightforward LP formulation (indeed, a mere feasibility program).

$$
\begin{array}{lr}
\sum_{j \in A_{i}} p_{j} u_{i}\left(a_{j}, a_{-i}\right)>u_{i}\left(s_{i}, a_{-i}\right) & \forall a_{-i} \in A_{-i} \\
p_{j} \geq 0 & \forall j \in A_{i} \\
\sum_{j \in A_{i}} p_{j}=1 & \\
\hline
\end{array}
$$

- While the constraints do indeed describe strict domination by a mixed strategy, they do not constitute a linear program.
$>$ The problem is that the constraints in linear programs must be weak inequalities.

Strict Domination by a mixed strategy

- Instead, we must use the LP that follows:
minimize $\sum_{j \in A_{i}} p_{j}$
$\begin{array}{llr}\text { subject to } & \left.\sum_{j \in A_{i}} p_{j} u_{i}\left(a_{j}, a_{-i}\right) \geq u_{i}\left(s_{i}, a_{-i}\right) \quad \mathbf{(}^{*}\right) \quad \forall a_{-i} \in A_{-i} \\ & p_{j} \geq 0 & \forall j \in A_{i}\end{array}$
- This LP simulates the strict inequality of constraint through the objective function.
$>$ Because no constraints restrict the p_{j}^{\prime} 's from above, this LP will always be feasible.
$>$ However, in the optimal solution the $p_{j}^{\prime} s$ may not sum to 1 ; indeed, their sum can be greater than 1 or less than 1.
$>$ In the optimal solution, the p_{j}^{\prime} s will be set so that their sum cannot be reduced any further without violating constraint (*).
$>$ Thus for at least some $a_{-i} \in A_{-i}$ we will have:

$$
\sum_{j \in A_{i}} p_{j} u_{i}\left(a_{j}, a_{-i}\right)=u_{i}\left(s_{i}, a_{-i}\right)
$$

Strict Domination by a mixed strategy

$\operatorname{minimize} \sum_{j \in A_{i}} p_{j}$
subject to $\quad \sum_{j \in A_{i}} p_{j} u_{i}\left(a_{j}, a_{-i}\right) \geq u_{i}\left(s_{i}, a_{-i}\right) \quad$ (*) $^{*} \forall a_{-i} \in A_{-i}$
$p_{j} \geq 0$
$\forall j \in A_{i}$

- A strictly dominating mixed strategy therefore exists if and only if the optimal solution to the LP has objective function value strictly less than 1.
$>$ In this case, we can add a positive amount to each p_{j} in order to cause constraint (*) to hold in its strict version everywhere while achieving the condition $\sum_{j} p_{j}=1$.

Weak Domination by a mixed strategy

- Again our inability to write a strict inequality will make things more complicated. However, we can derive an LP by adding an objective function to the feasibility program.

maximize	$\sum_{a_{-i} \in A_{-i}}\left[\left(\sum_{j \in A_{i}} p_{j} \cdot u_{i}\left(a_{j}, a_{-i}\right)\right)-u_{i}\left(s_{i}, a_{-i}\right)\right]$	
subject to	$\sum_{j \in A_{i}} p_{j} u_{i}\left(a_{j}, a_{-i}\right) \geq u_{i}\left(s_{i}, a_{-i}\right)$	(*) *
	$p_{j} \geq 0$	$\forall a_{-i} \in A_{-i}$
	$\sum_{j \in A_{i}} p_{j}=1$	$\forall j \in A_{i}$

- Because of constraint (*), any feasible solution will have a nonnegative objective value.
If the optimal solution has a strictly positive objective, the mixed strategy given by the p_{j}^{\prime} s achieves strictly positive expected utility for at least one $a_{-i} \in A_{-i}$, meaning that s_{i} is weakly dominated by this mixed strategy.

Iterated dominance

Finally, we consider the iterated removal of dominated strategies.

We only consider pure strategies as candidates for removal;
> indeed, as it turns out, it never helps to remove dominated mixed strategies when performing iterated removal.
$>$ It is important, however, that we consider the possibility that pure strategies may be dominated by mixed strategies.

Iterated dominance (Cont’d)

- For both flavors of domination, it requires only polynomial time to iteratively remove dominated strategies until the game has been maximally reduced (i.e., no strategy is dominated for any player).
- A single step of this process consists of checking whether every pure strategy of every player is dominated by any other mixed strategy, which requires us to solve at worst
$\sum_{i \in N}\left|A_{i}\right|$ linear programs.
- Each step removes one pure strategy for one player, so there can be at most $\sum_{i \in N}\left(\left|A_{i}\right|-1\right)$ steps.

